Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Arch Biochem Biophys ; 671: 130-142, 2019 08 15.
Article En | MEDLINE | ID: mdl-31276659

Heme oxygenase-1 (HO-1, HMOX1) degrades pro-oxidant heme into carbon monoxide (CO), ferrous ions (Fe2+) and biliverdin. The enzyme exerts multiple cytoprotective functions associated with the promotion of angiogenesis and counteraction of the detrimental effects of cellular stress which are crucial for the survival of both normal and tumor cells. Accordingly, in many tumor types, high expression of HO-1 correlates with poor prognosis and resistance to treatment, i.e. chemotherapy, suggesting inhibition of HO-1 as a possible antitumor approach. At the same time, the lack of selective and well-profiled inhibitors of HO-1 determines the unmet need for new modulators of this enzyme, with the potential to be used in either adjuvant therapy or as the stand-alone targeted therapeutics. In the current study, we provided novel inhibitors of HO-1 and validated the effect of pharmacological inhibition of HO activity by the imidazole-based inhibitor (SLV-11199) in human pancreatic (PANC-1) and prostate (DU-145) cancer cell lines. We demonstrated potent inhibition of HO activity in vitro and showed associated anticancer effectiveness of SLV-11199. Treatment with the tested compound led to decreased cancer cell viability and clonogenic potential. It has also sensitized the cancer cells to chemotherapy. In PANC-1 cells, diminished HO activity resulted in down-regulation of pro-angiogenic factors like IL-8. Mechanistic investigations revealed that the treatment with SLV-11199 decreased cell migration and inhibited MMP-1 and MMP-9 expression. Moreover, it affected mesenchymal phenotype by regulating key modulators of the epithelial to mesenchymal transition (EMT) signalling axis. Finally, F-actin cytoskeleton and focal contacts were destabilized by the reported compound. Overall, the current study suggests a possible relevance of the tested novel inhibitor of HO activity as a potential anticancer compound. To support such utility, further investigation is still needed, especially in in vivo conditions.


Antineoplastic Agents/pharmacology , Enzyme Inhibitors/pharmacology , Heme Oxygenase (Decyclizing)/antagonists & inhibitors , Heme Oxygenase-1/antagonists & inhibitors , Imidazoles/pharmacology , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Epithelial-Mesenchymal Transition/drug effects , Humans
2.
Bioorg Med Chem Lett ; 29(4): 646-653, 2019 02 15.
Article En | MEDLINE | ID: mdl-30626557

In oncology, the "Warburg effect" describes the elevated production of energy by glycolysis in cancer cells. The ubiquitous and hypoxia-induced 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3) plays a noteworthy role in the regulation of glycolysis by producing fructose-2,6-biphosphate (F-2,6-BP), a potent activator of the glycolysis rate-limiting phosphofructokinase PFK-1. Series of amides and sulfonamides derivatives based on a N-aryl 6-aminoquinoxaline scaffold were synthesized and tested for their inhibition of PFKFB3 in vitro in a biochemical assay as well as in HCT116 cells. The carboxamide series displayed satisfactory kinetic solubility and metabolic stability, and within this class, potent lead compounds with low nanomolar activity have been identified with a suitable profile for further in vivo evaluation.


Amides/chemistry , Phosphofructokinase-2/antagonists & inhibitors , Quinoxalines/chemistry , Quinoxalines/pharmacology , Sulfonamides/chemistry , HCT116 Cells , Humans , Kinetics , Solubility
3.
ChemMedChem ; 14(1): 169-181, 2019 01 08.
Article En | MEDLINE | ID: mdl-30378281

Energy and biomass production in cancer cells are largely supported by aerobic glycolysis in what is called the Warburg effect. The process is regulated by key enzymes, among which phosphofructokinase PFK-2 plays a significant role by producing fructose-2,6-biphosphate; the most potent activator of the glycolysis rate-limiting step performed by phosphofructokinase PFK-1. Herein, the synthesis, biological evaluation and structure-activity relationship of novel inhibitors of 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3), which is the ubiquitous and hypoxia-induced isoform of PFK-2, are reported. X-ray crystallography and docking were instrumental in the design and optimisation of a series of N-aryl 6-aminoquinoxalines. The most potent representative, N-(4-methanesulfonylpyridin-3-yl)-8-(3-methyl-1-benzothiophen-5-yl)quinoxalin-6-amine, displayed an IC50 of 14 nm for the target and an IC50 of 0.49 µm for fructose-2,6-biphosphate production in human colon carcinoma HCT116 cells. This work provides a new entry in the field of PFKFB3 inhibitors with potential for development in oncology.


Drug Discovery , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Phosphofructokinase-2/antagonists & inhibitors , Quinoxalines/chemistry , Quinoxalines/pharmacology , Cell Survival/drug effects , Crystallography, X-Ray , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , HCT116 Cells , Humans , Lactic Acid/antagonists & inhibitors , Lactic Acid/biosynthesis , Models, Molecular , Molecular Structure , Phosphofructokinase-2/metabolism , Quinoxalines/chemical synthesis , Structure-Activity Relationship
...